On convex iterative roots of non-monotonic mappings
نویسندگان
چکیده
منابع مشابه
Modelling Iterative Roots of Mappings in Multidimensional Spaces
Solutions φ(x) of the functional equation φ(φ(x)) = f(x) are called iterative roots of the given function f(x). They are of interest in dynamical systems, chaos and complexity theory and also in the modelling of certain industrial and financial processes. The problem of computing this ”square root” in function (or operator) spaces remains a hard task and is, for the general case, still unsolved...
متن کاملNonexpansive Mappings and Iterative Methods in Uniformly Convex Banach Spaces
In this paper, most of classical and modern convergence theorems of iterative schemes for nonexpansive mappings are presented and the main results in the paper generalize and improve the corresponding results given by many authors. 2000 Mathematics Subject Classification: Primary 47H17; secondary 47H05, 47H10.
متن کاملOn Inverses of -convex Mappings
In the first part of this paper, we prove that in a sense the class of bi-Lipschitz δ-convex mappings, whose inverses are locally δ-convex, is stable under finite-dimensional δ-convex perturbations. In the second part, we construct two δ-convex mappings from l1 onto l1, which are both bi-Lipschitz and their inverses are nowhere locally δ-convex. The second mapping, whose construction is more co...
متن کاملAn iterative method for amenable semigroup and infinite family of non expansive mappings in Hilbert spaces
begin{abstract} In this paper, we introduce an iterative method for amenable semigroup of non expansive mappings and infinite family of non expansive mappings in the frame work of Hilbert spaces. We prove the strong convergence of the proposed iterative algorithm to the unique solution of a variational inequality, which is the optimality condition for a minimization problem. The results present...
متن کاملMinimization of Non-smooth, Non-convex Functionals by Iterative Thresholding
Numerical algorithms for a special class of non-smooth and non-convex minimization problems in infinite dimensional Hilbert spaces are considered. The functionals under consideration are the sum of a smooth and non-smooth functional, both possibly non-convex. We propose a generalization of the gradient projection method and analyze its convergence properties. For separable constraints in the se...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Aequationes mathematicae
سال: 2017
ISSN: 0001-9054,1420-8903
DOI: 10.1007/s00010-017-0483-x